Multidisciplinary Method Development to Characterize and Quantify SiO₂ Nanoparticle Degradation in Complex Matrices

 $\underline{\mathsf{M. Maceroni}}^{1,2}$, D. Bossert 1,2 , L. Rodriguez-Lorenzo 1,2 , D. A. Urban 1,2 , A. Petri-Fink 1,2 , B. Rothen-Rutishauser 1,2 , F. Schwab $^{1,2}*$

¹Adolphe Merkle Institute, ²University of Fribourg

Silica nanoparticles (SiO_2 -NPs) and in general siliceous nanomaterials are used in a broad range of commercial products including foodstuffs and cosmetics. Recent research explores the use of SiO_2 -NPs as a delivery vehicle for molecules in plants^[1], which could be interesting for nanoagrochemicals, under the reservation that such SiO_2 nanomaterials degrade easily^[2]. Fundamental knowledge for the development of such agricultural applications is needed to understand the SiO_2 -NP behavior in the presence of plants and soil. Different parameters can influence the SiO_2 -NP dissolution in aqueous solutions, or the degradation in biological/environmental media. Particle shape and size, degree of aggregation, porosity, pores size, morphology, and surface functionalization as well as mucilage and exudates of organisms can govern the dissolution/degradation rates ^[3]. We will present initial results of an experimental interdisciplinary approach to characterize and quantify the differential dissolution of SiO_2 NPs in media with increasing complexity, from simple aqueous solution to the highly complex soil matrix.

- [1] H. I. Hussain, Z. Yi, J. E. Rookes, L. X. Kong, D. M. Cahill, *Journal of Nanoparticle Research* **2013**, 15, 1676.
- [2] F. Schwab, G. Zhai, M. Kern, A. Turner, J. L. Schnoor, M. R. Wiesner, *Nanotoxicology* **2016**, *10*, 257-278.
- [3] J. G. Croissant, Y. Fatieiev, N. M. Khashab, Advanced Materials 2017, 29.